Recycling of methylthioadenosine is essential for normal vascular development and reproduction in Arabidopsis.
نویسندگان
چکیده
5'-Methylthioadenosine (MTA) is the common by-product of polyamine (PA), nicotianamine (NA), and ethylene biosynthesis in Arabidopsis (Arabidopsis thaliana). The methylthiol moiety of MTA is salvaged by 5'-methylthioadenosine nucleosidase (MTN) in a reaction producing methylthioribose (MTR) and adenine. The MTN double mutant, mtn1-1mtn2-1, retains approximately 14% of the MTN enzyme activity present in the wild type and displays a pleiotropic phenotype that includes altered vasculature and impaired fertility. These abnormal traits were associated with increased MTA levels, altered PA profiles, and reduced NA content. Exogenous feeding of PAs partially recovered fertility, whereas NA supplementation improved fertility and also reversed interveinal chlorosis. The analysis of PA synthase crystal structures containing bound MTA suggests that the corresponding enzyme activities are sensitive to available MTA. Mutant plants that expressed either MTN or human methylthioadenosine phosphorylase (which metabolizes MTA without producing MTR) appeared wild type, proving that the abnormal traits of the mutant are due to MTA accumulation rather than reduced MTR. Based on our results, we propose that the key targets affected by increased MTA content are thermospermine synthase activity and spermidine-dependent posttranslational modification of eukaryotic initiation factor 5A.
منابع مشابه
Phloem-Specific Methionine Recycling Fuels Polyamine Biosynthesis in a Sulfur-Dependent Manner and Promotes Flower and Seed Development.
The Yang or Met Cycle is a series of reactions catalyzing the recycling of the sulfur (S) compound 5'-methylthioadenosine (MTA) to Met. MTA is produced as a by-product in ethylene, nicotianamine, and polyamine biosynthesis. Whether the Met Cycle preferentially fuels one of these pathways in a S-dependent manner remained unclear so far. We analyzed Arabidopsis (Arabidopsis thaliana) mutants with...
متن کاملMethionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis.
Both Met (methionine) and SAM (S-adenosylmethionine), the activated form of Met, participate in a number of essential metabolic pathways in plants. The subcellular compartmentalization of Met fluxes will be discussed in the present review with respect to regulation and communication with the sulfur assimilation pathway, the network of the aspartate-derived amino acids and the demand for product...
متن کاملAbsence of Methylthioadenosine Phosphorylase in Human Gliomas1
All normal mammalian tissues contain methylthioadenosine phosphorylase, which plays a role in the recycling of purines and methionine consumed during polyamine synthesis. A complete deficiency of methyl thioadenosine phosphor) lase has been reported in some human leukemias and lymphomas and in a few solid tumors. The exact incidence of the enzyme deficiency among fresh human tumor specimens has...
متن کاملRole of Follicle Stimulating Hormone in the Survival, Activation and Further Growth of in vitro Cultured Sheep Primordial Follicles
The aim of the present study was to investigate the effect of follicle stimulating hormone (FSH) on survival, activation and growth of ovine primordial follicles using histological studies. Pieces of ovine ovarian cortex were obtained and cultured for 6 days in Minimum Essential Medium supplemented with or without FSH (50 ng/mL). These fragments were then process to be used for histology compar...
متن کاملPseudomonas syringae type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction.
HopAF1 is a type III effector protein of unknown function encoded in the genomes of several strains of Pseudomonas syringae and other plant pathogens. Structural modeling predicted that HopAF1 is closely related to deamidase proteins. Deamidation is the irreversible substitution of an amide group with a carboxylate group. Several bacterial virulence factors are deamidases that manipulate the ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 158 4 شماره
صفحات -
تاریخ انتشار 2012